Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Methylome reorganization during in vitro dedifferentiation and regeneration of Populus trichocarpa.

Identifieur interne : 002590 ( Main/Exploration ); précédent : 002589; suivant : 002591

Methylome reorganization during in vitro dedifferentiation and regeneration of Populus trichocarpa.

Auteurs : Kelly Vining [États-Unis] ; Kyle R. Pomraning ; Larry J. Wilhelm ; Cathleen Ma ; Matteo Pellegrini ; Yanming Di ; Todd C. Mockler ; Michael Freitag ; Steven H. Strauss

Source :

RBID : pubmed:23799904

Descripteurs français

English descriptors

Abstract

BACKGROUND

Cytosine DNA methylation (5mC) is an epigenetic modification that is important to genome stability and regulation of gene expression. Perturbations of 5mC have been implicated as a cause of phenotypic variation among plants regenerated through in vitro culture systems. However, the pattern of change in 5mC and its functional role with respect to gene expression, are poorly understood at the genome scale. A fuller understanding of how 5mC changes during in vitro manipulation may aid the development of methods for reducing or amplifying the mutagenic and epigenetic effects of in vitro culture and plant transformation.

RESULTS

We investigated the in vitro methylome of the model tree species Populus trichocarpa in a system that mimics routine methods for regeneration and plant transformation in the genus Populus (poplar). Using methylated DNA immunoprecipitation followed by high-throughput sequencing (MeDIP-seq), we compared the methylomes of internode stem segments from micropropagated explants, dedifferentiated calli, and internodes from regenerated plants. We found that more than half (56%) of the methylated portion of the genome appeared to be differentially methylated among the three tissue types. Surprisingly, gene promoter methylation varied little among tissues, however, the percentage of body-methylated genes increased from 9% to 14% between explants and callus tissue, then decreased to 8% in regenerated internodes. Forty-five percent of differentially-methylated genes underwent transient methylation, becoming methylated in calli, and demethylated in regenerants. These genes were more frequent in chromosomal regions with higher gene density. Comparisons with an expression microarray dataset showed that genes methylated at both promoters and gene bodies had lower expression than genes that were unmethylated or only promoter-methylated in all three tissues. Four types of abundant transposable elements showed their highest levels of 5mC in regenerated internodes.

CONCLUSIONS

DNA methylation varies in a highly gene- and chromosome-differential manner during in vitro differentiation and regeneration. 5mC in redifferentiated tissues was not reset to that in original explants during the study period. Hypermethylation of gene bodies in dedifferentiated cells did not interfere with transcription, and may serve a protective role against activation of abundant transposable elements.


DOI: 10.1186/1471-2229-13-92
PubMed: 23799904
PubMed Central: PMC3728041


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Methylome reorganization during in vitro dedifferentiation and regeneration of Populus trichocarpa.</title>
<author>
<name sortKey="Vining, Kelly" sort="Vining, Kelly" uniqKey="Vining K" first="Kelly" last="Vining">Kelly Vining</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Forest Ecosystems and Society, 321 Richardson Hall, Corvallis, OR, USA. kelly.vining@oregonstate.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forest Ecosystems and Society, 321 Richardson Hall, Corvallis, OR</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Pomraning, Kyle R" sort="Pomraning, Kyle R" uniqKey="Pomraning K" first="Kyle R" last="Pomraning">Kyle R. Pomraning</name>
</author>
<author>
<name sortKey="Wilhelm, Larry J" sort="Wilhelm, Larry J" uniqKey="Wilhelm L" first="Larry J" last="Wilhelm">Larry J. Wilhelm</name>
</author>
<author>
<name sortKey="Ma, Cathleen" sort="Ma, Cathleen" uniqKey="Ma C" first="Cathleen" last="Ma">Cathleen Ma</name>
</author>
<author>
<name sortKey="Pellegrini, Matteo" sort="Pellegrini, Matteo" uniqKey="Pellegrini M" first="Matteo" last="Pellegrini">Matteo Pellegrini</name>
</author>
<author>
<name sortKey="Di, Yanming" sort="Di, Yanming" uniqKey="Di Y" first="Yanming" last="Di">Yanming Di</name>
</author>
<author>
<name sortKey="Mockler, Todd C" sort="Mockler, Todd C" uniqKey="Mockler T" first="Todd C" last="Mockler">Todd C. Mockler</name>
</author>
<author>
<name sortKey="Freitag, Michael" sort="Freitag, Michael" uniqKey="Freitag M" first="Michael" last="Freitag">Michael Freitag</name>
</author>
<author>
<name sortKey="Strauss, Steven H" sort="Strauss, Steven H" uniqKey="Strauss S" first="Steven H" last="Strauss">Steven H. Strauss</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23799904</idno>
<idno type="pmid">23799904</idno>
<idno type="doi">10.1186/1471-2229-13-92</idno>
<idno type="pmc">PMC3728041</idno>
<idno type="wicri:Area/Main/Corpus">002552</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002552</idno>
<idno type="wicri:Area/Main/Curation">002552</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002552</idno>
<idno type="wicri:Area/Main/Exploration">002552</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Methylome reorganization during in vitro dedifferentiation and regeneration of Populus trichocarpa.</title>
<author>
<name sortKey="Vining, Kelly" sort="Vining, Kelly" uniqKey="Vining K" first="Kelly" last="Vining">Kelly Vining</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Forest Ecosystems and Society, 321 Richardson Hall, Corvallis, OR, USA. kelly.vining@oregonstate.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forest Ecosystems and Society, 321 Richardson Hall, Corvallis, OR</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Pomraning, Kyle R" sort="Pomraning, Kyle R" uniqKey="Pomraning K" first="Kyle R" last="Pomraning">Kyle R. Pomraning</name>
</author>
<author>
<name sortKey="Wilhelm, Larry J" sort="Wilhelm, Larry J" uniqKey="Wilhelm L" first="Larry J" last="Wilhelm">Larry J. Wilhelm</name>
</author>
<author>
<name sortKey="Ma, Cathleen" sort="Ma, Cathleen" uniqKey="Ma C" first="Cathleen" last="Ma">Cathleen Ma</name>
</author>
<author>
<name sortKey="Pellegrini, Matteo" sort="Pellegrini, Matteo" uniqKey="Pellegrini M" first="Matteo" last="Pellegrini">Matteo Pellegrini</name>
</author>
<author>
<name sortKey="Di, Yanming" sort="Di, Yanming" uniqKey="Di Y" first="Yanming" last="Di">Yanming Di</name>
</author>
<author>
<name sortKey="Mockler, Todd C" sort="Mockler, Todd C" uniqKey="Mockler T" first="Todd C" last="Mockler">Todd C. Mockler</name>
</author>
<author>
<name sortKey="Freitag, Michael" sort="Freitag, Michael" uniqKey="Freitag M" first="Michael" last="Freitag">Michael Freitag</name>
</author>
<author>
<name sortKey="Strauss, Steven H" sort="Strauss, Steven H" uniqKey="Strauss S" first="Steven H" last="Strauss">Steven H. Strauss</name>
</author>
</analytic>
<series>
<title level="j">BMC plant biology</title>
<idno type="eISSN">1471-2229</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cell Culture Techniques (MeSH)</term>
<term>Cell Dedifferentiation (MeSH)</term>
<term>Cells, Cultured (MeSH)</term>
<term>Cytosine (metabolism)</term>
<term>DNA Methylation (MeSH)</term>
<term>Epigenomics (MeSH)</term>
<term>Populus (cytology)</term>
<term>Populus (genetics)</term>
<term>Populus (physiology)</term>
<term>Transformation, Genetic (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Cellules cultivées (MeSH)</term>
<term>Cytosine (métabolisme)</term>
<term>Dédifférenciation cellulaire (MeSH)</term>
<term>Méthylation de l'ADN (MeSH)</term>
<term>Populus (cytologie)</term>
<term>Populus (génétique)</term>
<term>Populus (physiologie)</term>
<term>Techniques de culture cellulaire (MeSH)</term>
<term>Transformation génétique (MeSH)</term>
<term>Épigénomique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cytosine</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cytosine</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cell Culture Techniques</term>
<term>Cell Dedifferentiation</term>
<term>Cells, Cultured</term>
<term>DNA Methylation</term>
<term>Epigenomics</term>
<term>Transformation, Genetic</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cellules cultivées</term>
<term>Dédifférenciation cellulaire</term>
<term>Méthylation de l'ADN</term>
<term>Techniques de culture cellulaire</term>
<term>Transformation génétique</term>
<term>Épigénomique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Cytosine DNA methylation (5mC) is an epigenetic modification that is important to genome stability and regulation of gene expression. Perturbations of 5mC have been implicated as a cause of phenotypic variation among plants regenerated through in vitro culture systems. However, the pattern of change in 5mC and its functional role with respect to gene expression, are poorly understood at the genome scale. A fuller understanding of how 5mC changes during in vitro manipulation may aid the development of methods for reducing or amplifying the mutagenic and epigenetic effects of in vitro culture and plant transformation.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>We investigated the in vitro methylome of the model tree species Populus trichocarpa in a system that mimics routine methods for regeneration and plant transformation in the genus Populus (poplar). Using methylated DNA immunoprecipitation followed by high-throughput sequencing (MeDIP-seq), we compared the methylomes of internode stem segments from micropropagated explants, dedifferentiated calli, and internodes from regenerated plants. We found that more than half (56%) of the methylated portion of the genome appeared to be differentially methylated among the three tissue types. Surprisingly, gene promoter methylation varied little among tissues, however, the percentage of body-methylated genes increased from 9% to 14% between explants and callus tissue, then decreased to 8% in regenerated internodes. Forty-five percent of differentially-methylated genes underwent transient methylation, becoming methylated in calli, and demethylated in regenerants. These genes were more frequent in chromosomal regions with higher gene density. Comparisons with an expression microarray dataset showed that genes methylated at both promoters and gene bodies had lower expression than genes that were unmethylated or only promoter-methylated in all three tissues. Four types of abundant transposable elements showed their highest levels of 5mC in regenerated internodes.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>DNA methylation varies in a highly gene- and chromosome-differential manner during in vitro differentiation and regeneration. 5mC in redifferentiated tissues was not reset to that in original explants during the study period. Hypermethylation of gene bodies in dedifferentiated cells did not interfere with transcription, and may serve a protective role against activation of abundant transposable elements.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23799904</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>10</Month>
<Day>24</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2229</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>13</Volume>
<PubDate>
<Year>2013</Year>
<Month>Jun</Month>
<Day>25</Day>
</PubDate>
</JournalIssue>
<Title>BMC plant biology</Title>
<ISOAbbreviation>BMC Plant Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Methylome reorganization during in vitro dedifferentiation and regeneration of Populus trichocarpa.</ArticleTitle>
<Pagination>
<MedlinePgn>92</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2229-13-92</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Cytosine DNA methylation (5mC) is an epigenetic modification that is important to genome stability and regulation of gene expression. Perturbations of 5mC have been implicated as a cause of phenotypic variation among plants regenerated through in vitro culture systems. However, the pattern of change in 5mC and its functional role with respect to gene expression, are poorly understood at the genome scale. A fuller understanding of how 5mC changes during in vitro manipulation may aid the development of methods for reducing or amplifying the mutagenic and epigenetic effects of in vitro culture and plant transformation.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">We investigated the in vitro methylome of the model tree species Populus trichocarpa in a system that mimics routine methods for regeneration and plant transformation in the genus Populus (poplar). Using methylated DNA immunoprecipitation followed by high-throughput sequencing (MeDIP-seq), we compared the methylomes of internode stem segments from micropropagated explants, dedifferentiated calli, and internodes from regenerated plants. We found that more than half (56%) of the methylated portion of the genome appeared to be differentially methylated among the three tissue types. Surprisingly, gene promoter methylation varied little among tissues, however, the percentage of body-methylated genes increased from 9% to 14% between explants and callus tissue, then decreased to 8% in regenerated internodes. Forty-five percent of differentially-methylated genes underwent transient methylation, becoming methylated in calli, and demethylated in regenerants. These genes were more frequent in chromosomal regions with higher gene density. Comparisons with an expression microarray dataset showed that genes methylated at both promoters and gene bodies had lower expression than genes that were unmethylated or only promoter-methylated in all three tissues. Four types of abundant transposable elements showed their highest levels of 5mC in regenerated internodes.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">DNA methylation varies in a highly gene- and chromosome-differential manner during in vitro differentiation and regeneration. 5mC in redifferentiated tissues was not reset to that in original explants during the study period. Hypermethylation of gene bodies in dedifferentiated cells did not interfere with transcription, and may serve a protective role against activation of abundant transposable elements.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Vining</LastName>
<ForeName>Kelly</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Department of Forest Ecosystems and Society, 321 Richardson Hall, Corvallis, OR, USA. kelly.vining@oregonstate.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pomraning</LastName>
<ForeName>Kyle R</ForeName>
<Initials>KR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wilhelm</LastName>
<ForeName>Larry J</ForeName>
<Initials>LJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ma</LastName>
<ForeName>Cathleen</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pellegrini</LastName>
<ForeName>Matteo</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Di</LastName>
<ForeName>Yanming</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mockler</LastName>
<ForeName>Todd C</ForeName>
<Initials>TC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Freitag</LastName>
<ForeName>Michael</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Strauss</LastName>
<ForeName>Steven H</ForeName>
<Initials>SH</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>06</Month>
<Day>25</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Plant Biol</MedlineTA>
<NlmUniqueID>100967807</NlmUniqueID>
<ISSNLinking>1471-2229</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>8J337D1HZY</RegistryNumber>
<NameOfSubstance UI="D003596">Cytosine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D018929" MajorTopicYN="N">Cell Culture Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054337" MajorTopicYN="Y">Cell Dedifferentiation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002478" MajorTopicYN="N">Cells, Cultured</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003596" MajorTopicYN="N">Cytosine</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019175" MajorTopicYN="N">DNA Methylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057890" MajorTopicYN="N">Epigenomics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="Y">cytology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014170" MajorTopicYN="N">Transformation, Genetic</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>01</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>06</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>6</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>6</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>10</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23799904</ArticleId>
<ArticleId IdType="pii">1471-2229-13-92</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2229-13-92</ArticleId>
<ArticleId IdType="pmc">PMC3728041</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>PLoS Biol. 2008 Dec 9;6(12):2880-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19071958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2011 Apr;30(4):631-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21210276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Biol. 2007 Jun 15;306(2):838-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17448460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2009;60:43-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19007329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2013;2:e00354</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23539454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2003 May;52(1):69-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12825690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Jun;186(4):856-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20406408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2010;11(10):R106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20979621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2006 Oct;163(10):1071-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16971217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 May 10;108(19):7884-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21518873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2007 Feb;63(3):337-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17072560</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2008;59(12):3271-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18640997</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Clin Pharmacol. 2012 Nov;7(4):333-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22794162</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2010 Sep;61(14):4069-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20729480</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2012;13:27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22251412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2011 Dec;108(8):1453-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21224269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2011 Jul;62(11):3713-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21617249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(4):e34615</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22509334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 1991 Jan;81(1):90-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24221164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2008;3(10):e3306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18827894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2009;9:132</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19919717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):8773-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8415605</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2007 Apr 1;120(Pt 7):1200-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17376962</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2009;9:91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19604382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2002 Jun;104(8):1263-1269</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12582579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2007 Jan;39(1):61-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17128275</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 1999;33:479-532</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10690416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2009 Jun;28(6):947-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19280192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Biol. 2004 Apr 1;268(1):1-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15031100</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2011 Aug 23;21(16):1385-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21802297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2010 Mar;6(3):e1000868</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20221264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Dyn. 2004 May;230(1):12-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15108305</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Oregon</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Di, Yanming" sort="Di, Yanming" uniqKey="Di Y" first="Yanming" last="Di">Yanming Di</name>
<name sortKey="Freitag, Michael" sort="Freitag, Michael" uniqKey="Freitag M" first="Michael" last="Freitag">Michael Freitag</name>
<name sortKey="Ma, Cathleen" sort="Ma, Cathleen" uniqKey="Ma C" first="Cathleen" last="Ma">Cathleen Ma</name>
<name sortKey="Mockler, Todd C" sort="Mockler, Todd C" uniqKey="Mockler T" first="Todd C" last="Mockler">Todd C. Mockler</name>
<name sortKey="Pellegrini, Matteo" sort="Pellegrini, Matteo" uniqKey="Pellegrini M" first="Matteo" last="Pellegrini">Matteo Pellegrini</name>
<name sortKey="Pomraning, Kyle R" sort="Pomraning, Kyle R" uniqKey="Pomraning K" first="Kyle R" last="Pomraning">Kyle R. Pomraning</name>
<name sortKey="Strauss, Steven H" sort="Strauss, Steven H" uniqKey="Strauss S" first="Steven H" last="Strauss">Steven H. Strauss</name>
<name sortKey="Wilhelm, Larry J" sort="Wilhelm, Larry J" uniqKey="Wilhelm L" first="Larry J" last="Wilhelm">Larry J. Wilhelm</name>
</noCountry>
<country name="États-Unis">
<region name="Oregon">
<name sortKey="Vining, Kelly" sort="Vining, Kelly" uniqKey="Vining K" first="Kelly" last="Vining">Kelly Vining</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002590 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002590 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23799904
   |texte=   Methylome reorganization during in vitro dedifferentiation and regeneration of Populus trichocarpa.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23799904" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020